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We study the rate of approximation by Norlund means for Walsh—Fourier series
of a function in L? and, in particular, in Lip(«, p) over the unit interval [0, 1),
where >0 and 1< p< 0. In case p= o0, by L? we mean Cy, the collection of
the uniformly W-continuous functions over [0, 1). As special cases, we obtain the
carlier results by Yano, Jastrebova, and Skvorcov on the rate of approximation by
Cesaro means. Our basic observation is that the Norlund kernel is quasi-positive,
under fairly general assumptions. This is a consequence of a Sidon type inequality.
At the end, we raise two problems. © 1992 Academic Press, Inc.

1. INTRODUCTION

We consider the Walsh orthonormal system {w.(x): k =0} defined on
the unit interval /= [0, 1) in the Paley enumeration (see [4]). To be more
specific, let

{1 if xe[0,271),
r =
ol —1 if xe[274L 1),

ro(x+ 1) :=r(x),

ri(x) :==ro(2/x), j=zland xel,

* This research was conducted while the author was a visiting professor at the Aligarh
Muslim University during the spring semester of 1990.
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376 MORICZ AND SIDDIQI

be the well-known Rademacher functions. For k=0 set wy{x)=1, and if
k=Y k;2/, k;=0orl,

=0
is the dyadic representation of an integer &k > 1, then set

wi(x) = ﬁ [r;(x)]"5. (1.1)
j=0

We denote by #, the collection of Walsh polynomials of order less than
n, that is, functions of the form

n—1

P(x) = Z awil(x),

k=0

where n>1 and {a,} is any sequence of real (or complex) numbers.
Denote by X, the finite o-algebra generated by the collection of dyadic
intervals of the form

L(k):=[k27" (k+1)277),  k=0,1,.,2"—1,

where m > 0. It is not difficult to see that the collection of X, -measurable
functions on I coincides with Z», m=0.

We will study approximation by means of Walsh polynomials in the
norm of L?=L*(I), 1<p< oo, and Cy = Cy(I). We remind the reader
that Cy is the collection of functions f:/— R that are uniformly con-
tinuous from the dyadic topology of I to the usual topology of R, or in
short, uniformly W-continuous. The dyadic topology is generated by the
union of 2, for m=0, 1, ...

As is known (see, e.g., [6, p. 9]), a function belongs to Cy if and only
if it is continuous at every dyadic irrational of 7, is continuous from the
right on 7, and has a finite limit from the left on (0, 1], all these in the
usual topology. Hence it follows immediately that if the periodic extension
of a function f from I to R with period 1 is classically continuous, then
f is also uniformly W-continuous on I. The converse statement is not
true. For example, the Walsh functions w, belong to C,, but they are not
classically continuous for k> 1.

For the sake of brevity in notation, we agree to write L™ instead of C
and set

1 1/p
st ={ [ ireras) 1<,
11l -=sup{| (X)) xe 1),
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After these preliminaries, the best approximation of a function fe L?,
1< p< o0, by polynomials in &, is defined by

E(f,L?):= in |f =PI,

Since £, is a finite dimensional subspace of L? for any 1< p< oo, this
infimum is attained.

From the results of [6, pp. 142 and 156-1587 it follows that L” is the
closure of the Walsh polynomials when using the norm ||-||,, 1< p<oc. In
particular, Cy is the uniform closure of the Walsh polynomials.

Next, define the modulus of continuity in L?, 1 < p< e, of a function
fel? by

w,(f,0) = sup |lt,f—fl,, &>,

|t} <d

where 7, means dyadic translation by 1:
1, f(x) = f(x + 1), x,tel
Finally, for each o >0, Lipschitz classes in L” are defined by
Lip(a, p) :={feL?:w,(f,8)=0(6")as - 0}.

Unlike the classical case, Lip{(a, p) is not trivial when « > 1. For example,
the function f:=w,+ w, belongs to Lip(a, p) for all a>0 since

w,(f,6)=0  when 0<d<27%

2. MAIN RESULTS

Given a function fe L!, its Walsh-Fourier series is defined by

iakwk(x), where :=j1 F(6) wilt) de. @.1)
k=0 k]

The nth partial sums of series in (2.1) are

n—1
sffox) =Y awi(x), nz=l
k=0

As is well known,

slfix)=[ fexF 0D,
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where

n—1

Dn(t) = Z Wk(’)! nz 15

k=0

is the Walsh—Dirichlet kernel of order n.
Let {g,:k>0} be a sequence of nonnegative numbers. The Norlund
means for series (2.1) are defined by

1
tn(f; x) == Z qn—ksk(j; )C),

nk=1

where

n—1
Qn = Z qka n>1
k=0

We always assume that ¢,>0 and

lim Q, = 0. (2.2)

n—

In this case, the summability method generated by {g,} is regular if and
only if ‘

3 qn—l
lim ——=0. (2.3)
n— o0 Qn

As to this notion and result, we refer the reader to [2, pp. 37-38].
We note that in the particular case when ¢, =1 for all k, these ¢,(f, x)
are the first arithmetic or (C, 1)-means. More generally, when

B+k

qk=A£:=( i ) for k>1landgq,=45:=1,
where §# —1, —2, ..., the 7,(f, x) are the (C, f)-means for series (2.1).

The representation

1 -
L(fx)=[ foc+ ) L0 ar (24)
V]
plays a central role in the sequel, where
1 n
Ln(t) = Z qn—ka(t)> nzl, (25)
nk=1

is the so-called Norlund kernel.



NORLUND MEANS OF WALSH~FOURIER SERIES 379
Our main results read as follow.
TueorEM 1. Let feL? 1<p<ow, let n=2"+k 1<k<2", m>1,
and let {g,:k>0} be a sequence of nonnegative numbers such that
ny—l n—1

¢t=0(1)  forsome 1<y<£2 (2.6)
v k=

n k=0

If {q.} is nondecreasing, then

m~—1

) = fl, <o Y, Vg aiop(fi27) 4 Ofe(f,27™), (27

20, %o

while if {q,} is nonincreasing, then

120~ fllo <57 Z (Qn2iv1— Q2o ) 0, (£:27)

2Qn e
+0{w,(f,27™)}. (2.8)

Clearly, condition (2.6) implies (2.2) and (2.3).
We note that if {g,} is nondecreasing, in sign g, 1, then

nqn41

Qn

=0(1) (2.9)

is a sufficient condition for (2.6). In particular, (2.9) is satisfied if

g.><kf or (logk)?  forsome p>0.

Here and in the sequel, g, < r, means that the two sequences {g,} and
{r.} have the same order of magnitude; that is, there exist two positive
constants C, and C, such that

Cir,<q, <Cyry for all & large enough.

If {g.} is nonincreasing, in sign g, |, then condition (2.6) is satisfied if,
for example,
(i) gy=<k~*f forsome O0<pf<1,or

.. 2.10
(i) g,=<(ogk)™®  forsome O0<§. (210)

Namely, it is enough to choose 1 <y <min(2, ') in case (i), and y=2 in
case (ii).
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THEOREM 2. Let {q,:k >0} be a sequence of nonnegative numbers such
that in case q, T condition (2.9) is satisfied, while in case q, | condition (2.10)
is satisfied. If f e Lip(a, p) for some x>0 and 1 < p< oc, then

G(n™%) if O<a<l,
[(f)—fil,=< G(n "logn) if a=1, (2.11)
Cn Y if a>1.

Now we make a few historical comments. The rate of convergence of
(C, B)-means for functions in Lip(a, p) was first studied by Yano [10] in
the cases when O <a <1, f>«a, and 1 € p< oc; then by Jastrebova [1] in
the case when a=f=1 and p=oc. Later on, Skvorcov [7] showed that
these estimates hold for 0 < f <« as well, and also studied the cases when
a=1, f>0, and 1 € p < oc. In their proofs, the above authors rely heavily
on the specific properties of the binomial coefficients 4.

Watari [8] proved that a function f'e L” belongs to Lip(x, p) for some
a>0and 1< p< oo if and only if

E(f.L?)=C(n %)

Thus, for 0 <& < 1 the rate of approximation to functions fin Lip(a, p) by
1,(f) is as good as the best approximation.

3. AUXILIARY RESULTS

Yano [9] proved that the Walsh-Fejér kernel
n—1

12 k
K,,(t)::; Z Dk(t)= Z (1—;;) Wk(l), nzl,
k=1

k=0

is quasi-positive, and K,~(1) is even positive. These facts are formulated in
the following

LeMMA 1. Let m=0 and n> 1; then K,-(t) =0 for all 1€,

' ol
j K0l dt<2  and | Knp(t)di=1.
0 ¢}

A Sidon type inequality proved by Schipp and the author (see [3])
implies that the Norlund kernel L,(¢) is also quasi-positive. More exactly,
C=[6(1)]""2y/(y — 1) in the next lemma, where (1) is from (2.6).
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Lemva 2. If condition (2.6) is satisfied, then there exists a constant C
such that

1
f L) dt<C,  n>1.
0

Now, we give a specific representation of L,(¢), interesting in itself.

LemMA 3. Let n=2"+k, 1 <k<2", and m>=1; then

2/—1

g.L(t)= —.i ri(t) wyr () z UGy 2ty i Gpnivr iy 1) Ki(2)

7 i=1

-1

- Z ri{t)ywa_ (1) 27g, 2iKy(t)
=0

m—1
+ z (@n_2s1— ity 1) Dyni(t)
j=0

+ Ot 1Donlt) + Opr (1) Li(2). (3.13

Proof. The technique applied in the proof is essentiaily due to
Skvorcov [7]. By (2.5),

am ] 274k
Q,L,(t)= Z Gn_iD;(t)+q, _mDymlt)+ Z g, D)
i=1 f=2m4 i
m—12/—1
=2 Y GueriDyy (1) = Dyr())

j=0 i=0

m—1 s2/—1
+ Z (2 qn~2f~i> Dy+i(2)

j=0 \i=0

k

+qn_ o Donlt)+ Y, o on_Domy (1), (3.2)

i=1

As is well known (see, e.g., [6, p. 46]),
Dony i()=Don(t) + 7, (1) D (1),  1<i<2™ (3.3)

Furthermore, by (1.1), it is not difficult to see that

wai_1 () =wy_ () w,(2), 0<i<2
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Hence we deduce that
2/ —1 2/ —i—1

Dyycr(t) = Dy y i (2) =r({1) Y w(t)=r,(1) Y way (0)
=0

=i

=r;(t) wos_ 1(£) Dy _ (1), 0<i<2 (34)
Substituting (3.3) and (3.4) into (3.2) yields

2/—1

m—1
0,L,(1)=— Z ri(8) wyi_((2) . Gn—2iv1D2i_ (1)

j=0 i

m—1
+ Z (@n—2i41— CQn_2iv141) Dyjri(t)
=0

+ Qs 1 Don(2) + Qrr () Li(2). (3.5)

Performing a summation by part gives
’ 2/

Gn—2i—iD2i_i(t)
i—0

i=
21

= Z Kt Gn ity i = Guiv1 4 i1) + 27Koi(2) g .

i=1

Substituting this into (3.5) results in (3.1).

LemMA 4. If gePn, feL?, where m=0 and 1< p< oo, then for

I1<p<w
1 p 1/p
{ ]
0

1
<27 (£277) | 15l ds (36)
while for p = co

sup {

<270. (5277 [ lg)] a (37)

[ 70 LS 0x + 0= f)1 de

[} ratt) s)LAx 0= f)] i xe 1}

Proof. Since ge %, it takes a constant value, say g,,(k) on each dyadic
interval 1,(k), where 0<k<2" We observe that if tel,,(k) then
t+2 " tel, (k)

We will prove (3.6). By Minkowski’s inequality in the usual and in the
generalized form, we obtain that
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! 4 1/p
{Ll “0 rm(t) gL f(x + 1)~ f(x)] dt dx}
ZHOI Zmil &) Ued oSl a pdxf/p

2m—1

STl {f [ Uedo-fad b amia) el

< g &) |

Im 4 1(2K)

{f”ﬂx+f%<ﬂx+t+2*m‘nmﬁ}mm
0

2m—1

< Xl 27" o (f, 27
k=0

This is equivalent to (3.6).
Inequality to (3.7) can be proved analogously.

4. PROOFS OF THEOREMS 1 AND 2

We carry out the proof of Theorem 1 for 1 < p < o0, The proof for p=
is similar and even simpler.

By (2.4), (3.1), and the usual Minkowski inequality, we may write that
P 1/p
dx}
LAY
a’x}

[ 0 BOL + - feo] dr ”dx}”"

0.1~ Flyi={[|[ QLA + 0= s a

N (1) (VLS (x + 1) = flx)] de

<3 {0
E‘U

Z Qn 27417 Qn721+1+1)
j=0

x{jo‘

[ omtorse 4 o= a a} "
0

+Qk+1 {fol pdx}m)
+ O {Ll ’ dx}w)

=:Aln+A2n+A3n+A4n+A5n: (41)

| DS e + 0= 0 a

[ 70 L)L 4 0= 7]
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say, where

27 -1

g (1) i=wy (1) Z Gy y-14i—Gn- 21440y Kil2),

i=1

hi(1) i=wy (1) 279, 24, 2Kull)

Applying Lemma 1, in the case when ¢, T we get that

-1

=1

27
=2<2jqn—2’_ Z 4y 2414

i=1

while in the case when ¢, |

2/

l .
J;) \g/(t)\ d!<2<z qn 2/”ii—zlqn 2//

i=1

S2AQn 2+1=CQn 21an)

Thus, by Lemma 4, in the case ¢, 1

2

ol 2
JO |gj(t)| dt<2 Z i|({,,-2/"o:_q,x 2/”+i01|

n |
Aln< Z 2jqn Z/wp(f;z j)a

j=0

while in the case g, |

m- 1
Aln< Z (Qn 210I—Qn—2/‘1+l)wp(./;2-j)'
i=0

By virtue of Lemmas | and 4 again, we obtain that

”m
Ay <2 !

j=

Obviously, in the case ¢, |

J :
2q, 3<Qy 241~

Since

2™ if

1)2,"(z)={0 "

1
Y 24u_po,(f;27).
-0

Qn—Z/"ol'

te[0,2 ™),
te[27™ 1)

O0<j<m

><2/+ lqn 2y

(4.3)

(4.4)

(4.5)
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(see, e.g., [6, p. 71), by the generalized Minkowski inequality, we find that

m—1
A3n< Z (Qn—2/+1—Qn—2/'+1+1>
i=0

g

<[ Dt {j 1T z)—f(xﬂpdx}w d

m—1
< Z (Qn—2/+1_Qn72J*]+1)wp(f; 277, (4.6)
j=0
Aan < Qrro(f,277). (4.7)
Clearly, in the case ¢, 1
O nis1—Quone141527g, 4 (4.8)

Finally, by Lemmas 2 and 4, in a similar way to the above we deduce
that

45, <2700,(£2 ) [ ILI &< Q0,527 (49)

Combining (4.1)-(4.9) yields (2.7) in the case ¢, 1 and (2.8) in the case
Grcd-

Proof of Theorem 2. Case (2). g, T. We have
n—222""'  for 0<j<m—1.
Consequently, for such j’s

2jqn-2f:(n_2j+1)Qn~2an—2/+1 2/
Qn Qn—2f+1 Qn n—2"+1

where C equals @(1) from (2.9). Since f € Lip(e, p), from (2.7) it foliows
that

1
<C2mmr

st )
101 =11, =52 8, Vg, a2+ 02 )
—o()2m Y 2

oQ2—") if O<a<l,
=< O(m2~™) if a=1,
o2~ if o>l

This is equivalent to (2.11).
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Case (b). gq,l. For example, we consider case (i) in (2.10). Then
Q,>=n'"* This time we have
n—2/t1xam=1 for 0<j<m—2.
Since f € Lip(«, p), from (2.8) it follows that

m—2

1) =S, <575 X 27qu_2m10,(£,27)

2Qn,
—mp(ﬁz—m)+(9{w,,(ﬁ2*'")}

01
Q( )" Z 27, 127+ 027 ™)
n ;=0
o122
=—(;1)IT— Z 21(1701)4_(9(24%)

j=0

O(n—12m1-2) if O<a<l,
=< 0(n 'm) if a=1,
o) it a>1.

Clearly, this is equivalent to (2.11).
Case (ii) in (2.10) can be proved analogously.

5. CONCLUDING REMARKS AND PROBLEMS

(A) We have seen that condition (2.6) is satisfied when ¢, = (k + 1)*
for some > —1, and Theorems 1 and 2 apply. If ¢, increases faster than
a positive power of k, then relation (2.6) is no longer true in general. But
the case, for example, when g, grows exponentially is not interesting, since
then condition (2.3) of regularity is not satisfied. On the other hand, the
case when f= —1 is of special interest.

Problem 1. Find substitutes of (2.8) and (2.11) when ¢, =(k+1) "% In
this case, the t,(f) are called the logarithmic means for series (2.1).

(B) It is also of interest that Theorems 1 and 2 remain valid when
4, <k o(k), (5.1)
where f> —1 and ¢@(k) is a positive and monotone (nondecreasing or
nonincreasing) functions in k, slowly varying in the sense that
lim M:
k—w @(k)
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It is not difficult to check that in this case

Q,=n'*o(n).

(C) Now, we turn to the so-called saturation problem concerning the
Noérlund means 7,(/). We begin with the observation that the rate of
approximation by 7,(f) to functions in Lip(a, p) cannot be improved too
much as x increases beyond 1. Indeed, the following is true.

THEOREM 3. If {4} is a sequence of nonnegative numbers such that

lim inf gpn | >0, (52)

oz
and if for some fe L”, | < p< o,

It )= p=0(Qw'} a5 m— o, (5.3)
then { is constant.

We note that condition (5.2) is certainly satisfied if ¢, 1 or ¢, and
lim ¢, > 0.

Proof.  Since by definition
Exm(fe LPY< [1n(f) = S ps
and by a theorem of Watari [8]
iS00 f) = S 1, S2Em(f, L7),
it follows from (5.3) that

Iso( /)= F1,=0(Qp') as m—x. (5.4)

A simple computation gives that

m_y
Q{5 fs X) — ol f, x)} = Z (Qan— Qo k) apwilx).
k=1
Now, (5.3) and (5.4) imply that
I 2m—1
lim | z (Qomn— Qom &) a/\-"'k(x)i =0.
"o X I\ =1 i r

640,70 2.9
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Since |-, <|l-],, for any p>1 it follows that

lim [(Qy— Q0 _;)al

‘ 1 2™ 1
= lim '.0 Wj(x){ Z (Qz'"_Qz"'--k)aka(x)} dx
m— o | v k=1
21
< lim ' Z (sz—Qz’"—k)akwk(w)‘ =0.
mee =1 !

Hence, by (5.2), we conclude that a,=0 for all j> 1. Therefore, f =aqy is
constant.

In the particular case when g, =1 for all k, the ¢,(f) are the (C, 1)-
means for series (2.1) defined by

1 n
o,.(f, x):== Z se( /o x), nzl,
=
and Theorem 3 is known (see, e.g, [6, p. 191]). It says that if for some
fel? 1< p<g o,

leam(f)=fll,=0(2 ™) as m— o0,
then f is necessarily constant.

Problem 2. How can one characterize those functions f e L” such that

lo . (f)—fl,=0r"") forsome 1<p<ox? (5.5)
We conjecture that (5.5) holds if and only if

Y 2"w,(f,27") < x, or equivalently Y w,k 'Y< o.
m—0 k=1

The “if” part can be proved in the same manner as in the case when
w,(f, 8) = 0(6*) for some x> 1 (cf. [6, p. 190]). The proof (or disproof) of
the “only if” part is a problem.

(D) Finally, we note that the results of this paper can be carried over
to the systems that are obtained from the Walsh Paley system {w,(x)} by
means of the so-called piecewise linear rearrangements introduced by
Schipp [5]. (See also [7].) In particular, the Walsh—-Kaczmarz system is
among them.
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